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1. Introduction

Dynamical supersymmetry breaking (DSB) via strong gauge dynamics has long been an

attractive mechanism for explaining the large hierarchy between the weak scale and the

Planck scale [1]. Early, seminal models of DSB were important “existence proofs” —

however, they tended to be rather complicated (see e.g. [2 – 5] for reviews and references).

This was tied to the assumption that the DSB vacuum had to be the global minimum of the

potential. By relaxing this assumption and allowing for metastability, much simpler models

of DSB have recently been constructed, starting with the discovery of metastable vacua

in SQCD with massive flavors [6]. (Of course, metastability and its connection to SUSY

breaking are not new ideas; for earlier works see e.g. [7 – 11].) This work has opened new

model building avenues, especially for models of direct gauge mediation. Since metastable

SUSY-breaking models can be vector-like, they can naturally have large flavor symmetries.

This makes them more amenable for direct gauge mediation, where a subgroup of the flavor

symmetry is gauged and identified with the SM gauge group [12].

Unfortunately, despite all its positive features, the metastable vacuum of SQCD with

massive flavors has one major phenomenological defect: it preserves a continuous U(1)R
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symmetry. Without breaking this symmetry somehow, the gauginos of the visible sector

would remain massless.1

Various approaches have been tried to get around this problem. Motivated by the fact

that the low-energy effective theory of massive SQCD is simply a generalized O’Raifeartaigh

model, more sophisticated O’Raifeartaigh models with R-charge assignments different from

0 or 2 were studied in [14], and it was shown that such models could lead to spontaneous

R-symmetry breaking. A detailed study of the phenomenology of such models was under-

taken in [15]; however, no UV complete dynamical realization of these models is known.

(Non-renormalizable realizations based on massive SQCD with baryonic deformations were

constructed and studied in [16, 17].) Alternatively, one can gauge an auxiliary U(1) symme-

try of the problem; the competition between the gauge and Yukawa couplings can lead to

a spontaneous R-symmetry breaking minimum of the one-loop effective potential [18 – 20].

However, here there generally has to be some fine tuning of the couplings in order to achieve

the desired R-symmetry breaking [21]. Finally, a third (and perhaps most obvious) possi-

bility is to break the approximate R-symmetry explicitly, but on general grounds [22] this

generically leads to proximal SUSY vacua and some tuning has to be invoked (see e.g. [23 –

25] for models). One possibility that has been explored is to have explicit R-symmetry

breaking only through Planck-suppressed couplings to messengers [26, 27]. However, in this

case the messenger scale and the messenger SUSY splittings come from different sources, so

there are in general extra CP phases in the gaugino masses when doublet/triplet splitting

of the messengers is taken into account. Similarly, messenger-parity is not guaranteed and

there is a danger of inducing spontaneous breaking of the SM gauge group [28].

In this work we present another mechanism of spontaneous R-symmetry breaking which

can be viewed as an improvement upon previous attempts, inasmuch as it is simple, more

natural, dynamical and phenomenologically viable. The crucial observation is that all

the abovementioned attempts at spontaneous R-symmetry breaking assumed that the R-

charged pseudo-moduli obtain their potential at one-loop. In some instances, however,

pseudo-moduli do not obtain their potentials until two-loops, and then the story can be

quite different. Here, we will study one of the simplest illustrations of this phenomenon:

SQCD with both massive and massless flavors. In this model, the meson composed of the

massless quarks remains massless at one-loop in the low-energy effective theory [29]. Much

above the strong coupling scale the theory exhibits nonperturbative runaway behavior;

below the strong coupling scale, the two-loop potential was recently computed in the low-

energy effective theory and was shown to be a monotonically decreasing function of the

meson VEV [30]. Thus the model probably has runaway for all values of the field and has

no vacuum at all.

In this paper we show how the runaway is automatically stabilized by “Planck” sup-

pressed higher-dimension operators in the superpotential. The result is a local vacuum far

from the origin but well below the cutoff scale of the effective low-energy theory, where

1Two comments. First, the R-symmetry is broken explicitly by nonperturbative effects but this is

generally too small to allow for realistic gaugino masses. Second, we are assuming here standard Majorana

gaugino masses. An interesting alternative whose phenomenology has recently been revisited in [13] is to

have Dirac gaugino masses, in which case the R-symmetry need not be broken at all.
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both SUSY and R-symmetry are spontaneously broken.2

Aside from the SUSY-breaking minimum, the higher-dimension operators also restore

a supersymmetric solution. We show that the distance between the supersymmetric and

SUSY-breaking solution is parametrically large, ensuring that the metastable vacuum is

parametrically long-lived.

Consequently, SQCD with massive and massless flavors has all the necessary ingre-

dients, including large spontaneous R-symmetry breaking, for SUSY model building. We

illustrate this by writing down the simplest application of our model, namely a complete

model of “minimal” gauge mediation [8, 34]. The role of the singlet coupling to messengers

in our model is played by the meson composed of the massless electric quarks. As in [35],

we couple the meson to the messengers through non-renormalizable interactions in the UV.

We find that if the runaway is stabilized by a quartic coupling in the UV, surprisingly strin-

gent constraints on such models of minimal gauge mediation come from the requirements

of calculability in the SUSY-breaking sector together with non-tachyonic messengers.3 As

we show further this model can be successfully retrofitted [36] and all the couplings can be

explained in the context of discrete gauge symmetries [37].

Of course, the real promise of our new mechanism of dynamical SUSY and R-symmetry

breaking is in its potential applications to models of direct gauge mediation, where there

is no invariant distinction between messenger and SUSY-breaking fields. Since SQCD

with massive and massless flavors is vector-like, it automatically comes equipped with

large global flavor symmetries. It is easy to imagine gauging a subgroup of these flavor

symmetries and identifying it with the SM gauge group. Then SUSY breaking will be

automatically communicated to the SM via gauge mediation, and unlike in [6], the MSSM

gauginos will acquire viable soft masses. In this context one still has to overcome the

long-standing challenge of the Landau pole problem, since there will generally be lots of

extra matter charged under the SM gauge group. This is a very interesting problem that

we will reserve for future work.

Our paper is organized as follows. In section 2 we review SQCD with massive and

massless flavors. We pay special attention to the theory far out along the pseudo-moduli

space (where the runaway will ultimately be stabilized). In this regime, the theory can be

described by an effective supersymmetric Lagrangian, and the leading-log approximation to

the runaway potential has been calculated as part of a more general analysis in [38], using

the techniques of wavefunction renormalization [39, 40]. However, to keep the discussion

in this paper self-contained we present a sketch of the calculation in the appendix. In

section 3 we introduce the stabilization of the two-loop runaway potential via higher-

dimension operators, discuss the spectrum of particles around the SUSY-breaking vacuum,

2A similar idea in a different context was proposed in [31] to explain the hierarchy between the Planck

scale and the GUT scale. See also [29, 32, 33] for recent models based on massive SQCD where dangerous

pseudo-moduli directions were stabilized with higher-dimension operators. However in these latter examples

the pseudo-moduli in question were stabilized at the origin and were not the sources of R-symmetry breaking.
3These constraints can be relaxed if one chooses to stabilize the runaway by even higher-dimension

operators. The main drawback of this possibility is that a more complicated discrete symmetry is needed

to maintain such a structure.
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and derive constraints on the parameters of the model which follow from calculability and

longevity. Section 4 is dedicated to constructing and analyzing a model of minimal gauge

mediation using massive+massless SQCD as the SUSY-breaking sector.

2. SQCD with massive and massless flavors

2.1 An overview of the model

In this section we review the main results of [30], while simultaneously establishing our nota-

tion and conventions (which differ slightly from those of [30]). We will consider SUSY QCD

with SU(Nc) gauge group and Nf flavors in the free magnetic phase (Nc < Nf < 3Nc/2).

We will take Nf0 < Nc of the flavors to be massless with the other Nf1 = Nf −Nf0 having

equal mass.4 When all the flavors are massive (but light compared to the strong coupling

scale Λ), this model exhibits a metastable supersymmetry breaking state [6]. However,

when some of the flavors are massless, the situation is very different: some of the pseudo-

moduli of the low-energy effective theory are not stabilized at one-loop [29]. Instead, they

acquire a potential at two-loops and it was recently shown in [30] that this potential is

monotonically decreasing along the pseudo-moduli space, leading to runaway behavior.

Now let us describe the low-energy effective theory in more detail. Using Seiberg

duality [41], we have a weakly coupled description at low energies in terms of an IR-free

SU(N) gauge theory (with N = Nf −Nc). The matter content consists of a gauge singlet

Nf ×Nf meson matrix Φ and Nf flavors of magnetic quarks ϕ, ϕ̃. It will be convenient in

the following to split the Nf flavor indices into Nf0 and Nf1 sized blocks, i.e.

Φ =

(
Φ11 Φ10

Φ01 Φ00

)
, ϕ =

(
ϕ1

ϕ0

)
, ϕ̃T =

(
ϕ̃1

ϕ̃0

)
, (2.1)

with Φij an Nfi × Nfj matrix and ϕi, ϕ̃
T
i Nfi × N matrices. The fields can be normal-

ized to have canonical Kähler potential plus uncalculable higher-dimensional corrections

suppressed by powers of Λ. In this normalization, the superpotential of the theory is

W = hTr Φijϕjϕ̃i − hµ2Tr Φ11 , (2.2)

where h is an O(1) coupling and the traces are taken over the uncontracted flavor indices

of the different fields. In what follows we will assume without loss of generality that all

the couplings are real and positive. Note that although the global symmetry is no longer

SU(Nf ), we are still denoting all the Yukawa couplings by the same symbol h — at the

scale Λ this is the case up to corrections which vanish as µ
Λ → 0. Of course, below the scale

Λ these couplings will run differently, and we will take this into account when necessary.

The representations of the fields under all the gauge and global symmetries preserved by

the superpotential (2.2) are listed in the table below. Note that there are four independent

4It is trivial to ensure the naturalness of this structure by imposing appropriate (discrete) symmetries

which allow mass terms for some of the quarks but not others. We will have more to say about this in the

next sections.
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U(1) symmetries (including the R-symmetry), neglecting anomalies as in [6].

SU(N)
[
SU(Nf0)L SU(Nf0)R SU(Nf1) U(1)B U(1)1 U(1)2 U(1)R

]

Φ11 1 1 1 adj ⊕ 1 0 0 0 2

Φ10 1 1 0 −1 1 3/2

Φ01 1 1 0 1 0 3/2

Φ00 1 1 0 0 1 1

ϕ1 1 1 1 0 0 0

ϕ0 1 1 1 1 −1 1/2

ϕ̃1 1 1 −1 0 0 0

ϕ̃0 1 1 −1 −1 0 1/2

(2.3)

The reason for the funny U(1) charges will become apparent in the next section.

Since Nf1 = Nf −Nf0 > Nf −Nc, rank conditions mean that SUSY is spontaneously

broken at tree-level, as in [6]. The tree-level scalar potential is minimized along the follow-

ing pseudo-moduli space:

Φ11 =

(
0 0

0 X

)
, Φ10 =

(
0

Y

)
, ϕ1 =

(
χ

0

)
, ϕ̃T

1 =

(
χ̃

0

)
, χχ̃ = µ21IN ,

Φ01 =
(
0 Ỹ

)
, arbitrary Φ00, ϕ0 = ϕ̃0 = 0, (2.4)

with vacuum energy

V0 = (Nf1 −N)h2µ4 . (2.5)

Here χ, χ̃ are N × N matrices, X is an (Nf1 − N) × (Nf1 − N) matrix, Y and Ỹ T

are (Nf1 − N) × Nf0 matrices, and Φ00 is an Nf0 × Nf0 matrix. At the origin of the

pseudo-moduli space (2.4), the entire gauge symmetry and part of the global symmetry

are broken:

SU(N) ×
[
SU(Nf1) × U(1)B

]
→
[
SU(N)D × SU(Nf1 −N) × U(1)′B

]
, (2.6)

with the other global symmetries remaining unaffected.

As mentioned at the beginning of this section, the main novelty introduced by the

massless quarks is the fact that at one-loop, only some of pseudo-moduli are lifted by

the Coleman-Weinberg potential [29]. Specifically, all the fields except Φ00 are lifted and

stabilized at the origin by the one-loop potential. So to understand the dynamics of this

model we are driven to a two-loop computation on the pseudo-moduli space parameterized

by Φ00. This has been considered in detail in [30]. There it was found that the origin

of field space is destabilized, in other words, Φ00 acquires a negative mass squared term

around the origin

Veff = −h2µ2
(αh

4π

)2
N(Nc −Nf0)

(
1 +

π2

6
− log 4

)
Tr(Φ†

00Φ00) + O(Φ4
00) , (2.7)
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where αh ≡ h2

4π . Moreover, it was shown in [30] that the two-loop potential for Φ00 is

monotonically decreasing, leading to runaway behavior. This result has important physical

implications for ISS based model building and it can be interpreted geometrically in the

appropriate brane configuration [30]. In the next subsection we will study the model in

more detail in the 〈Φ00〉 ≫ µ regime.

2.2 Effective theory at large 〈Φ00〉

Since the pseudo-modulus Φ00 has a runaway potential, we are motivated to study the

theory in the large Φ00 ≫ µ regime. There the analysis of the pseudo-modulus potential

simplifies considerably — we can use the wavefunction renormalization techniques of [39,

40] to compute the two-loop potential in the leading-log approximation using only one-loop

anomalous dimensions.

To be more precise, we are interested in the theory for generic 〈Φ00〉 in the regime

hµ ≪ h〈Φ00〉 ≪ Λ . (2.8)

The point is that below the scale h〈Φ00〉 we can integrate out supersymmetrically the

Nf0 magnetic quarks coupling to Φ00. Then we are left with an effective supersymmetric

theory of the form

Keff = ZΦij
Tr Φ†

ijΦij + Zϕ1(Trϕ†
1ϕ1 + Tr ϕ̃†

1ϕ̃1) + . . . ,

Weff = hTr Φ11ϕ1ϕ̃1 − hµ2TrΦ11 − hTr ϕ̃1Φ10Φ
−1
00 Φ01ϕ1 , (2.9)

where the wavefunction factors in the Kähler potential are functions of Φ00 and where

. . . includes both the uncalculable O(1/Λ) corrections from the duality together with the

calculable O(1/〈Φ00〉) corrections from integrating out ϕ0, ϕ̃0.

The effective theory still has an SU(N) gauge symmetry; the gauge coupling can be ei-

ther IR or asymptotically free depending on whether Nf1 > 3N or Nf1 < 3N , respectively.

The latter would be problematic because then the Kähler potential would no longer be

well-behaved around the origin where we need to compute loops to understand the SUSY-

breaking vacuum. Thus in order to have a reliable SUSY-breaking vacuum we must require

Nf1 > 3N = 3(Nf −Nc) . (2.10)

This goes beyond the usual free-magnetic phase requirement Nf > 3N . Note that (2.10)

is equivalent to

Nf0 < 3Nc − 2Nf < Nc . (2.11)

The effective theory is essentially the “macroscopic model” of [6] but with a wavefunc-

tion factor in the Kähler potential that depends on Φ00. The theory still breaks SUSY via

the rank condition and stabilizes all the pseudo-moduli. The vacuum energy is:

V0 = (Nf1 −N)h2µ4Z−1
Φ11

. (2.12)

This can be interpreted as the effective potential for Φ00, after using the RGEs to compute

ZΦ11 in the leading-log approximation. The computation of ZΦ11 has been performed in [38]
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as a special case of a more general survey of pseudo-moduli. Here we simply quote the

answer; we will reproduce the calculation in appendix A for the sake of completeness.

logZΦ11 = N
(αh

4π

)2
Tr

(
log

Φ†
00Φ00

µ2

)2

+ . . . , (2.13)

where . . . are subleading in the two-loop leading-log approximation. Plugging this

into (2.12), we have in the leading-log approximation

Veff = −(Nf1 −N)Nh2µ4
(αh

4π

)2
Tr

(
log

Φ†
00Φ00

µ2

)2

. (2.14)

Of course, (2.14) can also be computed more directly by taking the large field limit of

the two-loop potential computed in [30].

3. Stabilizing the runaway

3.1 Adding a small quartic term

In this section, we will show how the runaway can be turned into a metastable SUSY-

breaking vacuum by allowing for generic non-renormalizable superpotential interactions.

One can easily imagine that such terms are present at the Planck scale, generated by the

theory of quantum gravity. Alternatively, they could be trivially generated at an inter-

mediate scale by integrating out massive matter in some renormalizable UV completion.

In any event, the point is that, since the runaway direction is a dimension two meson

in the electric theory, the lowest-dimension non-renormalizable operators — dimension

four interactions amongst the electric quarks — become mass terms for the runaway

fields in the IR. So the runaway is automatically stabilized by generic higher-dimensional

superpotential interactions.

Instead of considering the most general quartic terms for the electric quarks, we will

focus only those involving the Nf0 massless quarks; these become in the IR:

δW =
1

2
mf1g1f2g2(Φ00)f1g1(Φ00)f2g2 . (3.1)

It would be interesting to study in detail more general deformations involving Φ01, Φ10

and Φ11, but we will not do so in this paper. We will briefly discuss the possible effects

of such deformations at the end of the next subsection. The upshot is that, while such

deformations may complicate the details of our analysis, it is not obvious that they will

change the qualitative conclusions.

For Nf0 > 2, the quartic deformations in (3.1) necessarily break the SU(Nf0)L ×

SU(Nf0)R symmetry down to a subgroup. For simplicity, we will choose to preserve

SU(Nf0)D. We will further simplify the analysis by considering only one of the two inde-

pendent deformations that respect this symmetry:

δW =
1

2
hǫµTr Φ2

00 . (3.2)

– 7 –
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One could of course consider an arbitrary mixture of (3.2) and the other SU(Nf0)D
symmetric deformation (Tr Φ00)

2. However, since this complication will have no effect on

the essential physics that we will discuss below, we will ignore it. Notice that in (3.2) we

have written the deformation parameter in units of hµ, with a new dimensionless parameter

ǫ. This will simplify the notation throughout.

In order for the deformation to not overwhelm the negative two-loop mass-squared

for Φ00 (2.7) around the origin, we need ǫ to be a small parameter (as its name suggests),

specifically

ǫ .
αh

4π
. (3.3)

Ordinarily this small parameter would seem rather artificial; however, here the UV

completion can make it natural — all we need is that the UV scale that suppresses (3.2)

in the electric theory is sufficiently large compared to Λ.

We are interested in whether the deformation can stabilize the runaway at large Φ00 ≫

µ. In this regime, the effective theory (2.9) deformed by (3.1) is a valid description. Thus

the vacuum energy along the pseudo-moduli space Φ00 is

V0 = (Nf1 −N)h2µ4Z−1
Φ11

+ h2ǫ2µ2TrΦ†
00Φ00 . (3.4)

Here we are neglecting the wavefunction renormalization of Φ00 itself — since we are going

to be balancing the two terms in (3.4) against each other to find the metastable vacuum,

any corrections from ZΦ00 are obviously going to be subleading.

Substituting the calculation (2.14) of the previous section, it is straightforward to

minimize the potential,

Veff = −(Nf1 −N)Nh2µ4
(αh

4π

)2
Tr

(
log

Φ†
00Φ00

µ2

)2

+ h2ǫ2µ2Tr Φ†
00Φ00 , (3.5)

and find the local minimum at

〈Φ00〉 ≈
µ

δ

√
log

1

δ
1INf0

,
1

δ
≡
√

(Nf1 −N)N
(αh

2π

) 1

ǫ
. (3.6)

The corrections to (3.6) are of the form 〈Φ00〉 → 〈Φ00〉×
(
1 + O

(
1

log δ ,
log(log δ)

log δ

))
and

they come not only from minimizing the potential (3.5), but also from the subleading-log

corrections to the wavefunction ZΦ11 . It is very important (and fortunate) for our purposes

that with the leading-log potential alone, we can capture the location of the Φ00 VEV (3.6)

up to small corrections.

In the regime ǫ ≪ αh

4π , the minimum of the potential is indeed located at 〈Φ00〉 ≫ µ,

which ensures that the approximation used to obtain the minimum is self-consistent.5

5Note that this is a stronger assumption than (3.3). In fact, (3.3) is sufficient for the existence of

a minimum away from the origin — since the potential turns up at large fields, as long as the origin is

destabilized such a minimum must exist. In this paper we will only consider the more restricted case ǫ ≪ αh

4π

where the effective theory is valid.
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Another requirement comes from demanding Φ00 ≪ Λ, so that the effective description in

terms of the magnetic theory can be trusted. According to (3.6), this implies

ǫ≫
αh

4π

µ

Λ
. (3.7)

(In fact, we will see below that an even stronger bound is required for calculability.)

Since these requirements (3.3), (3.7) can obviously be satisfied for the proper choice of pa-

rameters, we conclude that a viable minimum of the potential can be obtained by balancing

the two-loop runaway potential against a tree-level mass term for Φ00.

3.2 Properties of the metastable vacuum

Now let us describe the properties of the metastable vacuum in more detail. The

deformation (3.2) explicitly breaks some of the global symmetries (2.3). The remaining

symmetries are:

SU(N) ×
[
SU(Nf0)D × SU(Nf1) × U(1)B × U(1)1 × U(1)R

]
. (3.8)

Note that the choice of U(1) charges in (2.3) makes the symmetry breaking here especially

simple.

In the metastable vacuum, the symmetries are broken spontaneously by 〈Φ00〉 6= 0 and

ϕ1, ϕ̃1 6= 0 to

SU(N) ×
[
SU(Nf0)D × SU(Nf1) × U(1)B × U(1)1 × U(1)R

]

→
[
SU(N)D × SU(Nf0)D × SU(Nf1 −N) × U(1)′B × U(1)1

]
. (3.9)

Thus we see the crucial difference with [6]: the U(1)R symmetry is completely broken

in the metastable vacuum! This can have nice applications to phenomenology, as we will

see in the next section.

There is a rich spectrum of fluctuations around the metastable vacuum. We will now

describe these, roughly in order from heaviest to lightest.

1. First of all, the quark superfields ϕ0, ϕ̃0 are very heavy with O(h〈Φ00〉) masses. At

the tree-level, the squarks have small SUSY splittings δm2 ∼ h2ǫµ〈Φ00〉.

2. From the description in terms of the effective theory (2.9), (3.4), we see that the

spectrum below the scale h〈Φ00〉 basically factorizes into an ISS-like spectrum for

Φ11, ϕ1, ϕ̃1 plus the spectrum of the additional modes Φ01, Φ10, Φ00. The fields in

the ISS sector have masses ∼ hµ (except for the pseudo-moduli, which have one-loop

suppressed masses-squared, and the Goldstone bosons). Some of the fields have large

δm2 ∼ h2µ2 splittings. Since these fields have been given a detailed description in [6],

we will move on to describing the new fields.

3. Let us split up Φ01 and Φ10 into two submatrices each:

Φ01 =
(
Ã Ỹ

)
, Φ10 =

(
A

Y

)
, (3.10)

– 9 –
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where A, ÃT are N×Nf0 and Y , Ỹ T are (Nf1−N)×Nf0. Then from the third term

in the effective superpotential (2.9), we see that A, Ã acquire masses ∼ hµ2/〈Φ00〉

from the VEV of ϕ1. They also have SUSY splittings δm2 ∼ hµ2

〈Φ00〉2
FΦ00 ∼ h2ǫµ3

〈Φ00〉
. In

order for these to not make the scalar components of A, Ã tachyonic, 〈Φ00〉 cannot

be too large: 〈Φ00〉 ≪ µ/ǫ. Fortunately, this is guaranteed by the formula for the

metastable vacuum (3.6)!

4. Meanwhile Y , Ỹ are massless at tree-level. Since they have a suppressed coupling

∼ hµ/〈Φ00〉 to the SUSY-split “messenger” fields in ϕ1, ϕ̃1, their one-loop mass-

squared will be similarly suppressed, m2 ∼ ( hµ
〈Φ00〉

)2(hµ)2. An explicit calculation

shows this mass-squared is positive. Regarding fermions in this sector, the mass

term ψY ψeY is allowed by the unbroken symmetries and it is indeed generated at

one-loop. As before, to generate this operator we have to go through propagators

which are suppressed by 1/〈Φ00〉.

5. Finally, Φ00 itself obviously has a mass ∼ hǫµ, except for Im(Tr Φ00) which is the

massless Goldstone boson of U(1)R breaking.6

Finally, let us comment on the potential effects of other quartic operators besides the

ones considered in (3.1). From the discussion of the spectrum, it becomes clear that adding

operators of the type ǫµΦ11Φ10, ǫµΦ11Φ01 to the superpotential will change our vacuum

significantly. The reason is that the F -term of Φ11 gives rise to a tadpole for the light Y

modes, and shifts them far away from the origin. These operators might not change the

qualitative conclusions, but for our analysis to strictly apply they have to be absent for

some reason, e.g. by a SU(Nf0)D × SU(Nf1) global symmetry or discrete symmetries like

those we consider in section 4. By the same reasoning, operators of the form ǫµΦ11Φ00 are

also dangerous, so they should also be forbidden by symmetries. In fact, these operators

are automatically forbidden by any symmetry which allows a linear term in Φ11, while

simultaneously forbidding Φ00 and allowing Φ2
00.

3.3 Calculability, nonperturbative effects and lifetime

Finally, let us briefly address various issues related to the consistency of our analysis of

the metastable vacuum: calculability, irrelevancy of the nonperturbative effects, and the

lifetime.

First, because the tree-level mass of Φ00 is so much smaller than µ, we need to be

careful that uncalculable corrections to the Kähler potential do not overwhelm the tree-

level superpotential for Φ00. In particular, terms like

Keff ⊃
c

Λ2
Φ†

11Φ11Φ
†
00Φ00 (3.11)

6Actually, the effective scalar theory (3.4) appears to possess the full SU(Nf0)
2 symmetry even though

the superpotential (3.2) breaks it down to SU(Nf0)D. So when 〈Φ00〉 6= 0 it would seem there should

be many more tree-level massless modes than just the Goldstone boson of U(1)R breaking. In fact, these

accidental massless modes are all lifted by considering the most general SU(Nf0)D-symmetric deformation,

instead of just (3.2).
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in the Kähler potential, with c an uncalculable O(1) number, contribute to the mass of

Φ00 via FΦ11 ∼ hµ2:

Veff ⊃
c

Λ2
(hµ2)2Φ†

00Φ00 . (3.12)

In order for this to be negligible compared with the tree-level mass (hǫµ)2, we clearly need

ǫ≫
µ

Λ
. (3.13)

Note that this is a stronger requirement than (3.7) which we deduced above by de-

manding that 〈Φ00〉 ≪ Λ. We will get back to this constraint in more detail in section 4.

Next, the issue of whether nonperturbative effects can be neglected around the

metastable vacuum boils down to the IR-freedom requirement (2.10), just as in [6]. In

more detail, when Φ00 and Φ11 have generic VEVs, then by the standard scale matching

argument the dynamical superpotential is

Wdyn = N
(

h
Nf det Φ00det Φ11

Λ
Nf−3N

)1/N
. (3.14)

The calculability requirement (2.10) also guarantees that the non-perturbative superpo-

tential is an irrelevant (dim> 3) operator around Φ11 = 0 even for Φ00 6= 0. Thus it can

be safely ignored when computing loops around the non-SUSY vacuum.

Finally, let us address the issue of the lifetime. For this we need to know where the

SUSY vacua are. At this point we will take h = 1 to simplify the expressions, because

the value of h does not affect our analysis of the lifetime. Taking the ansatz Φ00 ∝ 1INf0

and Φ11 ∝ 1INf1
(and all other fields zero), it is straightforward to set the F -terms of the

magnetic superpotential to zero (including (3.14)) and solve. Introducing the additional

small parameter

ǫ̃ =
µ

ǫΛ
, (3.15)

this yields (ignoring phases)

〈Φ00〉SUSY = ǫ̃
−

3Nc−2Nf

2Nc−Nf0 ǫ
−

3Nc−2Nf +Nc−Nf0
2Nc−Nf0 µ = ǫ̃

Nf1+N

2Nc−Nf0 ǫ
2N

2Nc−Nf0 Λ ,

〈Φ11〉SUSY = ǫ̃
−

2(3Nc−2Nf )

2Nc−Nf0 ǫ
−

2(3Nc−2Nf )−Nf0
2Nc−Nf0 µ . (3.16)

So we always have

µ≪ 〈Φ00〉SUSY ≪ Λ , 〈Φ11〉SUSY ≫ µ . (3.17)

Since 〈Φ11〉non−SUSY = 0, (3.17) implies that the SUSY vacuum is always separated

by an amount ∆Φ11 ≫ µ from the non-SUSY vacuum. This is enough to ensure a para-

metrically long-lived metastable state, provided that the barrier also scales with ∆Φ11.

The following argument shows that this must be the case. As in [6], the most efficient

path between the non-SUSY and SUSY vacua is to first climb up to a local extremum with

q = q̃ = 0 and V = Nf1µ
4. Then the potential is schematically (now setting Λ = 1)

V ∼ Nf1

∣∣∣ΦNf0/N
00 Φ

Nf1/N−1
11 − µ2

∣∣∣
2
+Nf0

∣∣∣ΦNf0/N−1
00 Φ

Nf1/N
11 − ǫµΦ00

∣∣∣
2
. (3.18)
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Now the question is how far does one have to go in field space before the potential decreases

to Vnon−SUSY = (Nf1 − N)µ4? Since the vacuum energy comes primarily from the first

term in (3.18), at the very least we have to decrease it by making

Φ
Nf0/N
00 Φ

Nf1/N−1
11 ∼ µ2 . (3.19)

Consider now all values of Φ00 and Φ11 which satisfy (3.19). We claim that of all such

values, either Φ00 ≫ µ or Φ11 ≫ µ. Indeed, if Φ11 . µ, then Φ00 & µ(3N−Nf1)/Nf0 and one

can check that this satisfies Φ00 ≫ 〈Φ00〉non−SUSY , 〈Φ00〉SUSY ≫ µ. Therefore the width

of the potential barrier is guaranteed to be parametrically larger than µ, either through

∆Φ11 ≫ µ or through ∆Φ00 ≫ µ. This in turn ensures a parametrically long lifetime for

the metastable vacuum.

3.4 Summary of the requirements on the metastable vacuum

Since the discussion has been technical at times, we would like to conclude this section by

collecting all the different requirements that need to be satisfied in order for the metastable

vacuum to exist.

In addition to requiring that the theory is in the free magnetic phase (Nc < Nf <
3
2Nc),

we also must require

Nf0 < 3Nc − 2Nf ⇐⇒ Nf1 > 3(Nf −Nc) (3.20)

in order for the non-perturbative effects to be negligible around the metastable vacuum,

and to ensure a parametrically long lifetime.

The parameter ǫ = mΦ00/hµ must satisfy the constraints:

µ

Λ
≪ ǫ .

αh

4π
. (3.21)

The lower bound comes from demanding that uncalculable Kähler potential corrections

can be neglected relative to the tree-level mass term. It also ensures that 〈Φ00〉 ≪ Λ. The

upper bound comes from requiring that the tree-level mass term does not overwhelm the

two-loop potential and stabilize the metastable vacuum at the origin. We will be assuming

a stronger bound ǫ ≪ αh

4π throughout the paper so that the leading-log approximation to

the effective potential (3.5) can be used.

4. A simple model building application

4.1 The model

While the main emphasis of our paper is to present a new mechanism of metastable

supersymmetry-plus-R-symmetry breaking, in this section we would also like to briefly

touch upon how this mechanism can be applied to building viable and natural models of

gauge mediation. (A more detailed study of the model building applications, in particular

to models of direct gauge mediation, will be reserved for a future publication.) To that end,

we will present here the simplest application of our mechanism to model building: using
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our SUSY-breaking sector in a model of “ordinary” or “minimal” gauge mediation [8, 34].

Although this may seem like a trivial application, we will see that various consistency con-

ditions and phenomenological requirements force the model to be surprisingly predictive.

Our SUSY-breaking sector consists of the theory we studied in great detail in the

previous sections. For simplicity, we assume the minimum number of massless electric

quarks, Nf0 = 1. We will also assume for simplicity that h = 1; in general, it is not a free

parameter but is instead determined by various (uncalculable) O(1) numbers coming from

Seiberg duality [6].

The coupling to the messengers is as in ordinary gauge mediation — we couple the

field Φ00 (which has both a lowest-component and an F -component VEV) to a vector-like

pair of messenger fields Ψ, Ψ̃ transforming in 5, 5 of SU(5) GUT:

Wmess = λΦ00ΨΨ̃ . (4.1)

Here λ is some dimensionless coupling; since it is actually a non-renormalizable inter-

action in the UV, λ will be naturally quite small. We are considering only one messenger

pair here; the generalization to arbitrary numbers of messengers is trivial and does not

affect the rough sketch of the physics presented here.

The overall scale of the model is set by phenomenological considerations. We wish to

obtain a realistic spectrum of SUSY partners, so we set the gaugino mass to be around

100 GeV. This is achieved by using the usual formula of ordinary gauge-mediation

αr

4π

FΦ00

Φ00
∼ 102 GeV =⇒ ǫµ ∼ 105 GeV . (4.2)

Now let us consider the various consistency conditions on the model. In addition to

the constraints (3.20), (3.21) on the SUSY breaking sector, we also have the following

constraint coming from the requirement of non-tachyonic messengers:

(λΦ00)
2 > λFΦ00 . (4.3)

Substituting FΦ00 = ǫµΦ00, this becomes

λΦ00 > ǫµ . (4.4)

If λ were an O(1) coupling then this constraint would be trivial to satisfy, since Φ00 ≫ µ.

However, since λ comes from a non-renormalizable interaction in the UV, we find that

λ≪ 1 in such a way that (4.4) becomes quite restrictive, similar to [35].

To see this in more detail, let the Φ2
00 operator be suppressed by a mass scale M1 in

the electric theory, and the Φ00ΨΨ̃ be suppressed by a (possibly different) mass scale M2.

Then we have

λ ∼
Λ

M2
, ǫ ∼

Λ2

M1µ
, (4.5)

and (4.4) is equivalent to (after substituting Φ00 ∼ Cµ
ǫ

αh

4π with C the combination of

color and flavor factors and the log appearing in (3.6))

M2

CM1
<

µ

Λǫ

αh

4π
≪ 1 . (4.6)
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Thus for C ∼ O(1 − 10) there must be a sizeable hierarchy between M2 and M1. In

practice this turns out to be at least a factor of M2/M1 ∼ 10−4. This fine-tuning in M2

vs. M1 is perhaps the least attractive feature of this model.7

We can further manipulate the constraints to derive the allowed ranges of the param-

eters. We start with (4.2) and (4.5), which together imply

ǫµ ∼
Λ2

M1
∼ 105 GeV . (4.7)

Translating (3.21) to the new parameters leads to

µ

Λ
≪

Λ2

M1µ
.

1

(4π)2
, (4.8)

where we have taken h ∼ 1 for the upper inequality. Combining this with (4.7) we obtain

µ & 107 GeV ,

Λ ≫
µ2

105 GeV
& 109 GeV , (4.9)

M1 ≫
µ4

1015 GeV3 & 1013 GeV .

In fact, if we do not want M1 to exceed the Planck scale, then according to (4.9), µ

is actually bounded above by ∼ 108 GeV. So we see the parameters can only take values

in the ranges

µ ∼ 107−108 GeV , Λ ∼ 109−1012 GeV , M1 ∼ 1013−1019 GeV . (4.10)

Apparently, the parameters of the model are quite constrained by all the consistency

conditions, and the result is a relatively predictive version of ordinary gauge mediation!

Let us conclude this subsection by just mentioning one particularly intriguing choice of

parameters that satisfies all the constraints (and in fact minimizes the hierarchy between

M2 and M1):

µ ∼ 108 GeV , Λ ∼ 1012 GeV, M1 ∼Mpl ∼ 1019 GeV . (4.11)

This satisfies all the requirements as long as M2 . 1015 GeV. Interestingly, this is

tantalizingly close to the GUT scale, so perhaps one could imagine a UV completion where

GUT-scale fields connect Φ00 to the messengers, but only Planck-suppressed interactions

generate Φ2
00.

7It is interesting to note that, if instead of a quartic deformation, the leading non-renormalizable term

is an even higher-dimension operator, δW ∼ Λk

M
2k−3

1

Φk
00, (and assuming the messengers are still coupled

through (4.1)) the constraint of non-tachyonic messengers becomes trivial for k ≥ 3. For instance, if k = 3

the messengers are non-tachyonic as long as

M1

M2
>

Λ2

M2
1

.

This is a rather trivial inequality which does not lead to any hierarchy between M1 and M2.
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4.2 Phenomenological features of the model

Now let us briefly mention some phenomenological aspects of our ordinary gauge mediation

model. For concreteness we will focus on the point (4.11) with M2 ∼ 1015 GeV. However,

we would like to emphasize that the statements we will make in this subsection are for

the most part predictions of our model, not simply consequences of the particular choice

of parameters.

In our model, the parameters of ordinary gauge mediation are

Mmess ∼ λΦ00 ∼ 105−106 GeV ,

F ∼ λFΦ00 ∼ 1010−1011 GeV2 , (4.12)

m3/2 ∼
FΦ11

Mpl
∼ 1−10 MeV .

Here we have used λ ∼ 10−3 and ǫ ∼ 10−3. Note that Mmess and F come from the same

source, the R-symmetry breaking scale Φ00, and therefore there are no extra CP phases in

the gaugino masses even if doublet/triplet splitting of the messengers is present. Moreover,

having one and the same source for Mmess and F , as we do, guarantees messenger-parity,

which is necessary for a consistent spectrum of soft terms.

Since R-symmetry is spontaneously broken, the R-axion is massless in gauge theory,

up to small non-perturbative contributions. On top of the field theory effects, there is also

a supergravity contribution to the mass ma. Following [42] we find that this contribution is

ma ∼

√
ǫµ3

Mpl
∼ 10 GeV . (4.13)

This is already well above the astrophysical bound, ma & 10 MeV.

Note that the mass of the gravitino in (4.12) is always determined by the largest F -

term in the SUSY-breaking sector. In this model, this is not FΦ00 but is instead FΦ11 ∼

µ2 ∼ 1016 GeV2. So what we have is a model with light messengers but a heavy (∼ 1 MeV)

gravitino. This combination of features is generally rare in models of gauge-mediation; here

it is achieved because the hidden sector has a subsector with much larger SUSY-breaking

than the SUSY-breaking felt by the messengers.8

A heavy gravitino can have observable consequences at colliders. In general, a gravitino

mass of (4.12) implies that the NLSP is sufficiently long lived that it will escape the detector.

(For a good review of this subject and more references, we refer the reader to [2].) Thus the

standard γγ+MET signal of gauge mediation will not be observed. On the other hand, if

the NLSP is a very long-lived slepton (as would be the case, for instance, if the messenger

scale is very low or there are Nm ∼ 5 messengers) then the collider signatures of the model

could be quite spectacular.

8The gravitino mass also sets the scale of all the gravity mediated contributions to soft terms. These

contributions are not degenerate and, in general, violate flavor in the maximal possible way. For the gravitino

masses considered here, there is no contradiction with precision measurements and these contributions are

allowed to be arbitrary. For a recent work analyzing flavor aspects of combined gauge and gravity mediation

see [43].
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4.3 Naturalizing the UV model

To build a natural model (starting from some high scale) with the dynamics described

above we clearly need to forbid all the super-renormalizable terms in the UV Lagrangian,

while still allowing for the quartic interactions between the massless electric quarks. In

addition, as explained in section 3, some quadratic operators must be forbidden for our

analysis to be reliable. We would also like to forbid the most general couplings between

the electric quarks and the messengers while allowing for (4.1); otherwise the messenger

SUSY masses and F -terms will no longer necessarily come from the same source. Finally,

we would like to generate the mass scale µ dynamically. As we will see in this section, all

four of these conditions can be met by “retrofitting the model” [36] with an auxiliary gauge

group and imposing its associated non-anomalous discrete R-symmetry. This approach was

implemented recently in a similar MGM-type context by [27].

The main idea of retrofitting is as follows [36]. Consider a pure super Yang-Mills

(SYM) theory SU(Ñ ) with the strong scale being Λ̃. At energies below Λ̃ there is a

gaugino condensate which can be used to source masses for some of the electric quarks.

Furthermore, the SYM theory has a non-anomalous Z2 eN R-symmetry, and this can be

promoted to a gauged discrete symmetry of the entire theory.

Now let us turn to a concrete realization of the UV theory along these lines. Consider

the following gauge symmetry:

SU(3) × SU(Nc) ×GSM × Z6 . (4.14)

The SU(3) group is a pure SYM theory, GSM is the SM (or GUT) gauge group and SU(Nc)

is the gauge group of SQCD. Let Q1 denote the Nf1 massive electric quarks of SQCD and

Q0 be the only electric quark which is massless in the UV. Z6 is generated by g such that

g6 = 1. We assign the following charges under Z6:

∫
d2θ : g−2 ; WαW

α, Q0, Q̃0, Ψ, Ψ̃ : g2 ; Q1, Q̃1 : g3 . (4.15)

Here Wα is the chiral field strength of the SU(3) SYM. Note that these charge assignments

forbid all the renormalizable couplings. Now let us write down the first few terms in the

superpotential of this theory:

W =
1

M1
(Q0Q̃0)

2 +
1

M2
Q0Q̃0ΨΨ̃ +

1

M2
3

TrWαW
αQ1Q̃1 + . . . . (4.16)

Here . . . stand for operators of dimension 6 and higher, as well as for quartic messenger

self-interactions, both of which are irrelevant for our discussion. We see that the dangerous

terms Q1Q̃1ΨΨ̃ are forbidden by the discrete R-symmetry. We also see that all but the

Φ2
00-type quartic interactions are forbidden.9

9We wish to emphasize again that only some of the additional quadratic operators cause significant shifts

of the vacuum we analyzed (and even in this case it could very well be that our qualitative conclusions

remain intact), so the fact all of them are forbidden by the symmetries (4.14) is an added (but by no means

necessary) benefit.
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To estimate Λ̃ we take for simplicity M3 ∼ Mpl. For µ2 ∼ 1016 GeV2 (4.11), we find

Λ̃ ∼ 1014 GeV. Hence Λ̃ ≫ Λ, which is necessary for the consistency of our analysis.

Gaugino condensation breaks Z6 to Z2, which is an unbroken symmetry of the theory.

Indeed, Φ00 ∼ Q0Q̃0, which obtains a VEV, is R-even. Note that this Z2 R-symmetry is

naturally extended to the R-parity of the MSSM.

Lastly, let us briefly discuss the issue of the discrete R-symmetry anomalies. The

classification and analysis of the various possible anomalies has been discussed, for instance,

in [37, 44, 45]. In particular, [45] argued that the cubic anomaly does not impose any

constraints on the low energy effective action. So, we remain with the constraints of

gravitational anomaly and mixed gauge-discrete anomalies. The mixed anomaly with the

strong SU(3) is automatically satisfied and the mixed anomaly with SU(Nc) gives

2Nf1 +Nf0 = 3r , (4.17)

where r is some integer.

On the other hand, since we have not specified the R-charges of the SSM fields and have

not even chosen the matter content,10 we are unable to calculate the gravitational anomaly

and the mixed anomaly with the SSM gauge group. The specific charge assignment here

should be merely considered as an example of how to implement the above mentioned idea

of naturalization, and we leave a more detailed analysis to the future.
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A. Calculating the runaway potential at large fields

For the sake of completeness, we will describe in this appendix the RGE evolution of the

wavefunction of Φ11 for large Φ00. A more general derivation of the leading-log potential

for pseudo-moduli at large fields can be found in [38].

We will assume that 〈Φ00〉 = z1INf0
for simplicity; the generalization to arbitrary non-

degenerate Φ00 will be obvious at the end. The wavefunction factors in the Kähler potential

are governed by the RGEs:

logZΦ11 = 2

∫ Λ

Q

dQ′

Q′
γΦ11(Q

′; z) , (A.1)

where γΦ11 is its anomalous dimension, and Q is the RG scale. In this model, the relevant

one-loop anomalous dimensions above the scale hz are

γΦ11 =
Nh2

16π2ZΦ11Z
2
ϕ1

, γϕ1 = γeϕ1
=

Nf1h
2

16π2ZΦ11Z
2
ϕ1

+
Nf0h

2

16π2ZΦ10Zϕ0Zϕ1

, (A.2)

and below the scale hz they are

γΦ11 =
Nh2

16π2ZΦ11Z
2
ϕ1

, γϕ1 = γeϕ1
=

Nf1h
2

16π2ZΦ11Z
2
ϕ1

. (A.3)

In particular, γΦ11 is continuous at the scale hz. Therefore we have

∂ logZΦ11

∂ log hz
= 2

∫ Λ

Q

dQ′

Q′

∂γΦ11(Q
′; z)

∂ log hz
= −2

∫ Λ

Q

dQ′

Q′
γΦ11

∂(logZΦ11 + 2 logZϕ1)

∂ log hz
. (A.4)

At leading-log order, only the second term in (A.4) matters, and only through the discon-

tinuity in γϕ:

logZϕ1 =

∫ Λ

hz

dQ′

Q′

(
Nf1h

2

8π2ZΦ11Z
2
ϕ1

+
Nf0h

2

8π2ZΦ10Zϕ0Zϕ1

)
+

∫ hz

Q

dQ′

Q′

(
Nf1h

2

8π2ZΦ11Z
2
ϕ1

)
(Q<hz) ,

(A.5)

so
∂ logZϕ1

∂ log hz
= −

Nf0h
2

8π2ZΦ10Zϕ0Zϕ1

Θ(hz −Q) + . . . , (A.6)

where . . . do not contribute in the leading log approximation. Substituting this into (A.4)

and integrating twice, we conclude that

logZΦ11 =
Nh2

8π2

Nf0h
2

8π2

(
log

hz

Q

)2

+ . . . , (A.7)

where we have dropped the wavefunction factors since they will only contribute at higher

loop order.

Now, it is trivial to generalize to arbitrary Φ00. For instance, if Φ00 is diagonal but

has different eigenvalues, the same arguments as above lead to

logZΦ11 =
Nh2

8π2

h2

8π2

Nf0∑

i=1

(
log

hzi
Q

)2

+ . . . . (A.8)
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Since Φ00 can always be diagonalized by an SU(Nf0)L ×SU(Nf0)R transformation, the full

generalization of (A.7), (A.8) must be

logZΦ11 =
Nh2

16π2

h2

16π2
Tr

(
log

h2Φ†
00Φ00

Q2

)2

+ . . . , (A.9)

which is the result quoted in the text upon substituting Q = hµ.
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